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The Lotka-Vol terra  equations for the populat ion growth of a system of 
interacting species are linearized around equilibrium. The linear equations 
are solved for a special choice of the coefficients. It is shown that,  in the 
limit of a large number  of species, each one of them obeys a Langevin 
equation without memory. Subsequently, following Zwanzig, one species 
is added that  is treated without  linearization. The character of the equation 
governing its populat ion is materially dependent on the special choice of 
the interaction coefficients. It is concluded that  no general statement can be 
made concerning the stochastic behavior  of the solutions of the Lo tka -  
Volterra equations without  being more specific about  the coefficients than 
has been customary so far. 
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1. INTRODUCTION 

C o n s i d e r  a n  e c o l o g i c a l  s y s t e m  o f  S spec ies  f e e d i n g  o n  o n e  a n o t h e r .  A s impl i -  

f ied m a t h e m a t i c a l  m o d e l  is p r o v i d e d  b y  t h e  L o t k a - V o l t e r r a  e q u a t i o n s  

S 

dNJdt = ksNs + 0/~) ~ asTN~NT 
r = l  

Ns is t h e  n u m b e r  o f  i n d i v i d u a l s  o f  species  s a n d  ks is i ts  i n t r i n s i c  g r o w t h  ra t e .  

T h e  q u a d r a t i c  t e r m  d e s c r i b e s  h o w  a n  e n c o u n t e r  b e t w e e n  spec ies  s a n d  r 

r e su l t s  in  a n  i n c r e a s e  o f  o n e  a t  t h e  e x p e n s e  o f  t h e  o t h e r .  A c c o r d i n g l y ,  o n e  
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supposes a,r = -aT~ and supplies a positive "equivalence number" /~-1  to 
account for the fact that the loss of an individual r only adds a fraction of an 
individual to species s. Admittedly this is a crude model, but it is hoped that 
it may serve to gain insight in more complex situations. For background 
information and literature we refer to the review paper of Goel et al. ~ 

This set of S coupled nonlinear differential equations can be solved for 
S = 1 and treated graphically for S = 2, but little is known about the solu- 
tions for larger S. Kerner suggested that for very large S statistical methods 
might be used in analogy with those of statistical mechanics. Such methods, 
however, are always based on rather drastic assumptions concerning random- 
ness or absence of correlations, which even in the case of statistical mechanics 
are sometimes open to doubt. For  this reason it is of interest to study an even 
more simplified model, which can be solved exactly and may therefore serve 
as a touchstone for the statistical assumptions. 

One such simplification was recently studied by Zwanzig. (2,8~ First 
suppose that there is a time-independent solution Nff ~ > 0 obeying 

+ asrN:~ = 0 
T 

Then write Ns = Nr q + AN,, so that (1) takes the form 

AN, = fl; X(Neq + AN,) ~ a,rAN, 
t 

It is then possible to study small deviations from the equilibrium solution by 
neglecting the quadratic terms, or else to linearize all equations but one and 
study the nonlinear behavior of that one species as affected by the others. We 
shall do both for a special choice of the matrix (asr) for which the linear equa- 
tions can be solved explicitly. 

2. THE SPECIAL C H O I C E  FOR asr 

We omit all terms quadratic in the AN, and apply a scale transformation 

AN~ = (Nt~ l~ , )~x~,  a,, = ( N ~ N r  

The resulting set of S coupled linear equations is 

2, = Z csrxr 
l* 

The solution for given initial values x,(O) can formally be written in terms of 
an evolution matrix U(t), 

x,(t) = ~ U,,(t)x,(O), U = exp(et) 
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Note  tha t  there is a constant  o f  the mot ion  

3 ~.Xs  2 = E 
8 

In  order  to solve the equat ions explicitly we have to choose a special 
an t i symmetr ic  e tha t  can be diagonalized. In  order  tha t  the large number  of  
species will actually have the effect o f  a r a n d o m  heat  bath,  they should all 
interact,  tha t  is, there must  not  be too m a n y  zeros a m o n g  the c,r. We choose 
therefore 

C = 

( o 1 1 1  ... 
- 1  0 1 1 ... 
- 1  - 1  0 1 ... 

- 1  - 1  - 1  - 1  ... 

This describes a hierarchy of  species: each species is eaten by all its prede- 
cessors and  eats all its successors. 

'The eigenvalues ioJp and  normal ized eigenvectors J(s (p) o f  e are given by 
(p = 1, 2 . . . .  , S)  

c% = cot[~r(p + 3) /S] ,  X~ (p) = S -1f2 exp[2~ri(p + 3)s /S]  

This provides an explicit expression for  the evolut ion matr ix :  

s 

Usr(t) = ~ Xs(mXr(m*e '%t 
p = l  

+ 3) ,,(1, + 3)] = ~ exp[- -~ (s - r )  + it cot S 

Fo r  large S the sum tends to the integral 

Us~(t) ~ ( l f l r ) f  ~ exp[2i(s - r )~  + it cot  q~] d~o 
J o  

The  integrat ion can be p e r f o r m e d  and gives for  t > 0 

U~r(t) = 0 for  s < r 

= e - t  for  s =  r 

) __e_t  ~ s - r - 1  ( - 2 t )  ~§ for  s > r  
v=o v (v + 1)! 

This result demonst ra tes  that,  a l though for  finite S all no rma l  modes  are 
oscillatory, in the limit S - +  oo an irreversible damping  appears .  
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3. THE  LANGEVIN  E Q U A T I O N  FOR I N D I V I D U A L  SPECIES 

For any particular species k one has 

x~(t) = e-txk(O) + G(t) 

where G(t) only involves the initial values of other species, 

c(t)  = ~, v~,(t)x,(O) 
r C k  

Accordingly, one also has, putting G + d = L, 

:c~(t) = - x k ( t )  + L(t)  

This has the form of a Langevin equation, although so far L does not have 
the properties of a Langevin force but is merely some linear expression in the 
initial values of the other species. 

Now consider an ensemble of solutions determined by a canonical 
distribution of the initial values in x space, 

P(x l ,  x2, ..., x~) = const x e -e:~ 

ExtracV the subensemble in which xk has its assigned initial value xk(O). 
Averaging over this subensemble, one finds of course ( L ( t ) ) =  O, and 
furthermore 

(G(t)G(t ' ) )  = ~ UkT(t)U~(t')O ~r~ 
r , s C k  

= OUkk(t-  t ') -- OUk~(t)Ukk(t') 
- -  0 { e x p ( - I t  - t ' [ )  - e x p ( - t -  t')} 

From this one easily derives 

(L( t )L( t ' ) )  = 20 3(t - t ') 

Thus in the limit o f  large S each species obeys the Langevin equation, the 
Langevin force L being supplied by the interaction with other species. This 
result implies that there is no memory in the behavior of xk(t). 

4. ZWANZIG'S MODEL 

We now add one more species x and do not linearize its equation: 

:~ = (1 + ~x) ~_, csx~ 
8 

2 ~ L CsrXr - csX 

Here a = (Neq/fi) - 1/z and the c, are some set of constants. Following Zwan- 
zig, (z) we have omitted terms involving products x.x as well. 
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Substitution of the solution of the second line into the first line yields 
an equation for x(t) alone of the form 

2 =  (1 + a x )  - K ( t -  t')x(t') dt' + F(t) 

The memory kernel K and the force F are 

K(t) = ~c.UsT(t)c~ = ~ e'% ~ ~ c s X .  ( ' ,2 
ST 2) 

F(t) = ~, csUsT(t)xT(O) 
ST 

For a canonical ensemble, (F(t ) )  = 0 and one easily verifies 

(F(t)F(t ' ))  = OK(t - t') 

The quantities ~ csX(~ ~) arise f rom the cs by a unitary transformation and can 
therefore be given ahnost any value by suitably choosing the % subject only 
to the restriction that these must be real. Hence the function K(t) may have 
almost, any form, subject to the restriction that its Fourier t ransform is 
positive (as befits a correlation function). We consider two special cases. 

First take all cs equal to 1 (the added species eats all others) or all equal 
to - 1 (the added species is eaten by all others). Then for large S one finds 

K ( t )  = 2 8 ( 0  

so that the equation for x has no memory.  Rather, its probability density 
obeys a Fokker-Planck equation 

02 OP(x,ot t) = 2 ~Ox xO + ~x)p + o ~ (1 + ~x)~p 

I f  one takes cs = 1 for =S < s < fiS and zero outside, one finds 

K(t) = (2,~it)-l(e"~~ - e ~ '~176  

which approximates a delta function for/3 -+ 1, c~ -+ 0, but otherwise has a 
memory.  

As the second case, suppose that the cs consist of  a random row of + 1 
and - 1. Since there are many  terms in each frequency interval, this amounts 
to writing 

K(t) = E e ' % t ~  Xs(~')XT(P)*~c% 
p 8~T 

= ~ e'%t ~, [X~(')12 = Se -'t' 
p s 
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Owing to the factor S, the evolution of x ( t )  is very rapid, and we scale the 
time accordingly: t = S -  1/%. 

dx  (1 + ~x) - exp x(r ' )  dr'  + r 
dr  

where ~(r)  = S - I I 2 F ( t ) .  For large S this reduces to 

{s } dx_ = (1 + ~x) - x(~')  d~' + ~ ( , )  
dr  

with 

<~(~)> = 0,  < ~ ( ~ ) , ( ~ ' ) >  = 0 

These equations indicate that (on the time scale on which x evolves) the 

m e m o r y  is complete ,  in the sense that the influence of past values of x does not 
die out. 

On the other hand, the memory is very limited, in the sense that it can be 
eliminated at the expense of introducing one higher derivative: 

d 1 dx  

d r l  + a x d r  

The substitution 1 + ax = e u yields the equation 

d2u/dr  2 = 1 - e ~ 

This is the equation of motion for a classical particle in a potential V(u)  = 

e u - u, from which it follows that all solutions are periodic. 
Our general conclusion is that the results depend strongly on the special 

form of the matrix (ars), and that no universal statements about the behavior 
in time are possible without a more detailed specification of that matrix. 
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